Surgical Management of Pain
Contents

Contributors ... ix
List of Commentators ... xiii
Foreword ... xv
Preface ... xix
Dedication ... xxi

Part I Basic Considerations

1. Physiologic Anatomy of Nociception 2
2. Pathophysiology of Chronic “Neuropathic Pains” 25
3. Central Pain ... 42
4. Central Nervous System Mechanisms in Pain Modulation 65

Part II Fundamentals of Pain Medicine

5. The Problem of Pain: Measurement in Clinical Settings 78
7. Nonorganic Signs in Patients with Back Pain 128
8. Psychological Assessment Prior to Surgery for Implantable Pain-Management Devices .. 135
9. Disability Assessment .. 147
10. Outcome Assessment .. 156
11. Physical Medicine Interventions .. 165
12. Vocational Rehabilitation and Ergonomics 171
13. Medical Versus Multidimensional Management of Chronic Pain .. 181
14. Use of Oral Opioid Analgesics .. 197
15. Medical Boards and the Prescribing of Controlled Substances .. 209
16. Management of Pain by Anesthetic Techniques 218
17. The Role of the Multidisciplinary Pain Clinic 237
CONTENTS

18. Role of the Nurse Clinician ... 246
19. Management of Postoperative Pain in Neurosurgery 257

Part III Specific Pain Syndromes

20. Craniofacial Pain ... 276
21. Trigeminal Neuralgia: Historical Overview, with Emphasis on Surgical Treatment 288
22. Medical Management of Trigeminal Neuralgia 304
23. Atypical Facial Pain and Anesthesia Dolorosa 311
24. Glossopharyngeal, Geniculate, and Other Cranial Nerve Neuralgias 317
25. Low Back Pain ... 327
26. Lumbar Spine Disorders: Natural History, Surgical Outcome, and Treatment Failure Management ... 342
27. Failed Back Syndrome: Etiology, Assessment, and Treatment 354
28. Chronic Nonmalignant Nociceptive Pain Syndromes 365
29. Postthoracotomy Pain Syndrome .. 383
30. Postherpetic Neuralgia ... 393
31. Occipital Neuralgia .. 401
32. Pain Following Spinal Cord Injury ... 411
33. Stump, Phantom, and Avulsion Pain .. 422
34. Complex Regional Pain Syndrome: Type I, Reflex Sympathetic Dystrophy, and Type II, Causalgia .. 443
35. Central Pain Secondary to Intracranial Lesions 459
36. Cancer Pain ... 469
37. Pain Treatment in the Dying Patient .. 485

Part IV Surgical Procedures

38. Peripheral Nerve Stimulation .. 498
40. Spinal Cord Stimulation: Patient Selection 527
41. Spinal Cord Stimulation: Equipment and Implantation Techniques 535
42. Spinal Cord Stimulation for Severe Angina Pectoris 549
43. Motor Cortex Stimulation for Relief of Central Deafferentation Pain 555
44. Deep Brain Stimulation for Chronic Pain 565
45. Intrathecal Opioids: Mechanisms of Action 577
46. Intrathecal Opioids: Patient Selection 592
47. Intrathecal Opioids: Intrathecal Drug-Delivery Systems 603
48. Intrathecal Opioids: Technique and Outcomes 614
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>Intrathecal and Intracerebroventricular Opioids: Past Uses and Current Indications</td>
<td>625</td>
</tr>
<tr>
<td>50</td>
<td>Ablative Neurosurgical Techniques in the Treatment of Chronic Pain: Overview</td>
<td>633</td>
</tr>
<tr>
<td>51</td>
<td>Neurolysis and Neurectomy in the Peripheral Nervous System</td>
<td>647</td>
</tr>
<tr>
<td>52</td>
<td>Surgical Treatment of Painful Peripheral Nerve Injuries</td>
<td>654</td>
</tr>
<tr>
<td>53</td>
<td>Facet Blocks and Denervations</td>
<td>666</td>
</tr>
<tr>
<td>54</td>
<td>Dorsal Root Ganglionectomy and Dorsal Rhizotomy</td>
<td>677</td>
</tr>
<tr>
<td>55</td>
<td>Sympathectomy: Open and Thoracoscopic</td>
<td>688</td>
</tr>
<tr>
<td>56</td>
<td>Dorsal Root Entry Zone Lesions</td>
<td>701</td>
</tr>
<tr>
<td>57</td>
<td>Midline Myelotomy</td>
<td>714</td>
</tr>
<tr>
<td>58</td>
<td>Anterolateral Cordotomy</td>
<td>732</td>
</tr>
<tr>
<td>59</td>
<td>Percutaneous Stereotactic Pain Procedures: Percutaneous Cordotomy, Extralemniscal Myelotomy</td>
<td>745</td>
</tr>
<tr>
<td>60</td>
<td>Caudalis Dorsal Root Entry Zone Lesions, Nucleotomy, and Tractotomy</td>
<td>763</td>
</tr>
<tr>
<td>61</td>
<td>Mesencephalotomy</td>
<td>786</td>
</tr>
<tr>
<td>62</td>
<td>Medial Thalamotomy</td>
<td>795</td>
</tr>
<tr>
<td>63</td>
<td>Stereotactic Medial Thalamotomy for Chronic Pain: Is It an Effective Procedure?</td>
<td>805</td>
</tr>
<tr>
<td>64</td>
<td>Stereotactic Cingulotomy for the Treatment of Chronic Pain</td>
<td>812</td>
</tr>
<tr>
<td>65</td>
<td>Hypophysectomy for Intractable Pain from Metastatic Carcinoma: A Historical Perspective</td>
<td>821</td>
</tr>
<tr>
<td>66</td>
<td>Trigeminal Neurectomy</td>
<td>828</td>
</tr>
<tr>
<td>67</td>
<td>Percutaneous Radiofrequency Trigeminal Gangliolysis</td>
<td>841</td>
</tr>
<tr>
<td>68</td>
<td>Surgical Options for Facial Pain</td>
<td>849</td>
</tr>
<tr>
<td>69</td>
<td>Percutaneous Retrogasserian Glycerol Rhizotomy</td>
<td>865</td>
</tr>
<tr>
<td>70</td>
<td>Trigeminal Neuralgia: Treatment by Percutaneous Balloon Compression</td>
<td>874</td>
</tr>
<tr>
<td>71</td>
<td>Microvascular Decompression</td>
<td>878</td>
</tr>
<tr>
<td>72</td>
<td>Surgical Procedures for Other Nontrigeminal Cranial Neuralgias</td>
<td>889</td>
</tr>
<tr>
<td>73</td>
<td>Trigeminal Rhizotomy</td>
<td>898</td>
</tr>
<tr>
<td>74</td>
<td>Trigeminal Stimulation</td>
<td>903</td>
</tr>
<tr>
<td>75</td>
<td>Gamma Knife Radiosurgery for Trigeminal Neuralgia</td>
<td>908</td>
</tr>
</tbody>
</table>

Part V At the Forefront of Pain Surgery

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>Functional Imaging of Pain: Insights and Implications</td>
<td>919</td>
</tr>
<tr>
<td>77</td>
<td>Technological Innovation in Spinal Cord Stimulation</td>
<td>933</td>
</tr>
<tr>
<td>78</td>
<td>Innovative Intrathecal Analgesics</td>
<td>948</td>
</tr>
<tr>
<td>79</td>
<td>Encapsulated Cell Implants for Pain Surgery</td>
<td>958</td>
</tr>
<tr>
<td>80</td>
<td>Intrathecal Chromaffin Cell Allograft for Cancer Pain</td>
<td>973</td>
</tr>
</tbody>
</table>

Index | 980 |
Contributors

Osama S. Abdelaziz, MB ChB, MCh, MD
Lecturer of Neurosurgery
Department of Neurosurgery
Alexandria University
Faculty of Medicine
Alexandria, Egypt

Ronald I. Apfelbaum, MD
Professor of Neurosurgery
Department of Neurosurgery
University of Utah Health Sciences Center
Salt Lake City, Utah

Nicholas M. Barbaro, MD
Associate Professor
Department of Neurological Surgery
University of California, San Francisco
San Francisco, California

Giancarlo Barolat, MD
Professor of Neurosurgery
Thomas Jefferson University and
Director, Division of Functional Neurosurgery
Director of Neurosurgery
Thomas Jefferson University Hospital
Philadelphia, Pennsylvania

Thomas K. Baumann, PhD
Associate Professor of Neurological Surgery, Physiology, and Pharmacology
Department of Neurological Surgery
Oregon Health and Science University
Portland, Oregon

Edward C. Benzel, MD
Director, Spinal Disorders
Department of Neurosurgery
Cleveland Clinic Foundation
Cleveland, Ohio

Robert Boas, MB, BCh, FANZCA, FRCA
Section of Anesthesia
University of Auckland School of Medicine
Private Bag Auckland
New Zealand

Nikolai Bogduk, MD, PhD, DSc, FAFMM, FAFRM, FFPM (ANZCA)
Professor of Artery and Musculoskeletal Medicine
University of Newcastle
Royal Newcastle Hospital
Newcastle, New South Wales
Australia

Julie A. Brady, RN
Pain Nurse Coordinator
Department of Neurological Surgery
Oregon Health and Science University
Portland, Oregon

Giovanni Broggi, MD
Professor of Physiology-Neurosurgery
Istituto Nazionale Neurologo
Department of Neurosurgery
Milan, Italy

Jeffrey Alan Brown, MD
Toledo, Ohio

Kim Burchiel, MD, FACS
John Raaf Professor and Chairman
Department of Neurological Surgery
Oregon Health Sciences University
Portland, Oregon

Jeffrey A. Burgess, DDS, MSD
Clinical Assistant Professor
Department of Oral Medicine
University of Washington Dental School
Pain Center
University of Washington Medical Center
Seattle, Washington

Kenneth F. Casey, MD
Minneapolis Neurological Surgeons LTD
Plymouth, Minnesota

Robert C. Coghill, PhD
Assistant Professor
Department of Neurobiology and Anatomy
Wake Forest University School of Medicine
Winston-Salem, North Carolina

Michael J. Cousins, MD (Syd), FANZCA, FRCA, FFPMANZCA, FACHPm
Professor
Pain Management and Research Center
University of Sydney at Royal North Shore Hospital
St. Leonards, New South Wales
Australia

Giuseppe DeBenedittis, MD, PhD
Professor of Neurology
Pain Research and Treatment Unit
Institute of Neurosurgery
University of Micah, Ospedale Maggiore, Policlinico Irccs
ZaiZi, Milano
Italy
Elad I. Levy, MD
Resident
Department of Neurological Surgery
University of Pittsburgh Medical Center
Pittsburgh, Pennsylvania

Robert Levy, MD, PhD
Associate Professor
Dept. of Neurological Surgery
School of Medicine
Northwestern University
Chicago, Illinois

Bengt G.S. Linderoth, MD, PhD
Associate Professor of Neurosurgery
Department of Neurosurgery
Karolinska Institute/Hospital
Stockholm, Sweden

John D. Loeser, MD
Professor of Neurological Surgery and Anesthesiology
Department of Neurological Surgery
University of Washington
Seattle, Washington

Donlin M. Long, MD, PhD
Harvey Cushing Professor of Neurosurgery
Department of Neurosurgery
The Johns Hopkins Hospital
Baltimore, Maryland

L. Dade Lunsford, MD, FACS
Lars Leksell Professor and Chairman of Neurological Surgery
Department of Neurological Surgery and Department of Radiology and Radiation Oncology
University of Pittsburgh
Pittsburgh, Pennsylvania

Norman Marcus, MD
Director, New York Pain Treatment Program
New York, New York

Richard North, MD
Professor of Neurosurgery, Anesthesiology and Critical Care Medicine
Director, Division of Functional Neurosurgery
Director, Neurosurgery Spine Service
Johns Hopkins University
Baltimore, Maryland

Jose L. Ochoa, MD, PhD, DSc
Professor of Neurology and Neurosurgery and Good Samaritan Hospital and Medical Center and Oregon Health and Science University
Portland, Oregon

Richard K. Osenbach, MD
Assistant Professor of Surgery
Department of Neurosurgery
Duke University Medical Center
Durham, North Carolina

Sunil Panchal, MD
Director, Division of Pain Management
Weill Medical College of Cornell University
New York, New York

Richard B. Patt, MD
Associate Professor Anesthesiology and Neurology
University of Texas and President and Chief Medical Officer
The Patt Center for Cancer Pain and Wellness
Houston, Texas

George A. Porter, MD
Emeritus Professor of Medicine
Oregon Health and Science University
Portland, Oregon

Ali R. Rezai, MD
Associate Professor
Dept. of Surgery
Division of Neurosurgery
The Cleveland Clinic Foundation
Cleveland, Ohio

Jacqueline Sagen, PhD
Professor of Neurological Surgery
University of Miami School of Medicine
The Miami Project to Cure Paralysis
Miami, Florida

Oren Sagher, MD
Assistant Professor
Department of Neurosurgery
University of Michigan
Ann Arbor, Michigan
Contributors

Joel Seres, MD
Northwest Occupational Medicine Center
Portland, Oregon

Mark E. Shaffrey, MD
Department of Neurosurgery
Associate Professor of Neurosurgery
University of Virginia
Charlottesville, Virginia 22908

Richard K. Simpson, Jr., MD, PhD, FACS
Associate Professor
Depts. of Neurosurgery, Anesthesiology, and Physical Medicine and Rehabilitation
Baylor College of Medicine
Houston, Texas

Marc P. Sindou, MD, DSc
Professor of Neurosurgery
Hospital Neurologique P. Wertheimer
University of Lyon
Lyon, France

Konstantin V. Slavin, MD
Assistant Professor
Department of Neurosurgery
University of Illinois at Chicago
Chicago, Illinois

Brett R. Stacey, MD
Medical Director and Associate Professor
Pain Management Center
Department of Anesthesiology
Oregon Health and Science University
Portland, Oregon

Michael T. Stechison, MD, PhD, FRCS (C), FACS
South Georgia Neurosurgery, P.C.
Albany, Georgia

Renee Steele-Rosomoff, BSN, MBA
Ajunct Associate Professor-Medicine and Nursing
University of Miami
Comprehensive Pain and Rehabilitation Center
Miami Beach, Florida

Jamal M. Taha, MD
Assistant Professor
The Neuroscience Institute
Mayfield Clinic
University of Cincinnati College of Medicine
Cincinnati, Ohio

Ronald R. Tasker, MD, FRCS (C)
Professor Emeritus
Department of Neurosurgery
University of Toronto; University Health Network
Toronto Western Hospital
Toronto, Ontario
Canada

Susan W. Tolle, MD
Professor of Medicine
Director, Center for Ethics in Health Care
Oregon Health and Science University
Portland, Oregon

Takashi Tsubokawa, MD, MDSc.
Former Chairman of Neurosurgical Department
Visiting Professor
Nikon University School of Medicine
Mabashi-ku
Tokoyo, Japan

Sridhar Vasudevan MD
Clinical Professor of Physical Medicine and Rehabilitation
Medical College of Wisconsin
Milwaukee, Wisconsin

C. Peter N. Watson, MD, FRCPC
Assistant Professor
Toronto Hospital
Toronto, Ontario
Canada

Richard Weiner, MD, FACS
Clinical Associate of Neurosurgery
University of Texas
Southwestern Medical School
Dallas, Texas

Ursala Wesselmann, MD
Associate Professor
Department of Neurosurgery
Johns Hopkins University School of Medicine
Baltimore, Maryland

Robert H. Wilkins, MD
Professor
Dept. of Surgery
Division of Neurosurgery
Duke University Medical Center
Durham, North Carolina

David A. Williams PhD
Associate Professor of Psychiatry and Medicine
Department of Psychiatry and Medicine
Georgetown University Medical Center
Washington, DC

Robert P. Yezierski, PhD
Associate Professor
Director, Pain Research Group
The Miami Project
Miami, Florida
List of Commentators

Professor Patrick Aebischer
Valerie Anderson, PhD
Elhud Arbit, MD
Staffan Arner, MD
Edward Benzel, MD
Jean-Marie Besson, Dsc.
Ben Blumenkopf, MD
David Bowsher, MD
Robert Breeze, MD
Ron Brisman, MD
Jeffrey Brown, MD
Stephen Butler, MD
Ira Byock, MD
Rene Cailliet, MD
Jim Campbell, MD
Kenneth Casey, MD
C. Richard Conti, MD
Roger W. Davis, MD
Michael Decker, MD
Timothy Deer, MD
Barbara DeLateur, MD
Marshall Devor, MD
Daniel M. Doleys, PhD
David Dubuisson, MD
Claudio Feler, MD
Harold Fields, MD
Wilbert E. Fordyce, PhD
Bernardo Fraioli, MD
Barth Green, MD
Robert Grossman, MD
Stephen J. Haines, MD
Sten E. Hakanson, MD
Samual Hassenbusch, MD
R. Patrick Jacobs, MD
John Jane, MD
Peter J. Jannetta, MD
Daniel Jeanmonod, MD
David Joranson, MSSW
Douglas Kennemore, MD

Robert King, MD
David Kline, MD
Elliott S. Krames, MD
Christer Lindquist, MD
John Loeser, MD
Donlin Long, MD, PhD
Mario Meglio, MD
John (Sean) F. Mullan, MD, DSc
Bjorn Myerson, MD
Alf L. Nachemson, MD
G. Robert Nugent, MD
John Oakley, MD
George A. Ojemann, MD
Judith Paice, RN
Winston Parris, MB, BS, MD, FACPM
Ronald Pawl, MD
Richard Penn, MD
Joe Phillips, MD
Gabor Racz, MD
Brian Ready, MD, FRCP
Hubert Rosomoff, MD
Richard Rovit, MD
Nathan Selden, MD
Barry Sessle, MDS, PhD
Andrew Shetter, MD
Jean Siegfried, MD
Brian Simpson, MA, MD, Bch, MD, FRCS
Michael Stanton-Hicks, MD
Ulrich Steude, MD
Ronald Tasker, MD
John Tew, Jr., MD
David Thomas, MD
Harold Wilkinson, MD
William Willis, MD
Charles Wilson, MD
Tony Yaksh, PhD
Ron Young, MD
Professor Manfred Zimmerman II
The most often cited article in modern literature on pain and pain research is that published in Science 1965 by Melzack and Wall introducing the gate-control theory. In that paper there is a drawing of an infantlike figurine displaying the entire repertoire of surgical interventions for pain, illustrating that pain surgery was then tantamount to ablative procedures. However, Melzack and Wall also indicated the possibility of modulating by external means the endogenous pain controlling system described in their paper. The presentation of the gate-control theory not only denoted a turning in pain research, but it soon led to the first experimental trials to apply these ideas for therapeutic purposes in humans. Wall and Sweet courageously experimented on themselves, stimulating the infraorbital nerve via percutaneous needles and observing hypalgesia in the territory of the nerve. The observation led to the evolution of electric spinal cord stimulation by Shealy and the subsequent introduction of TENS. The basic concept of gating mechanisms (i.e., the importance for pain perception of a delicate interplay or balance between coarse and thin fibre afferent systems) had in fact been suggested also in the classical pain literature by Head and Holmes and by Zotterman. Although the theory as defined and presented in the famous Science paper attracted much interest, it was also much criticized. However, its role and impact on modern pain research and on the understanding of generation and modulation of pain can hardly be overrated. Of paramount importance was the realization that pain perception cannot be understood as being the result merely of signals transmitted in separate channels with interposed amplifying relays in a straight-through, one-to-one fashion, isolated from and uninfluenced by the rest of the CNS.

This new insight also represented a turning point for pain surgery, and in the 1970s many previous extensively-practiced destructive procedures such as posterior rhizotomy soon became obsolete. The new knowledge also offered likely explanations for the seemingly mysterious recurrence of pain after extensive lesioning of the “pain system.”

The introduction of electric stimulation of the CNS denoted an entirely new phase of treatment in pain surgery since it mainly replaced destructive interventions with reversible modes of modulating central pain processing. It seemed that this new approach to pain management had the unique feature of providing surprisingly long lasting relief. I well remember that Sweet once said that in his experience-which was indeed extraordinary-all forms of pain treatment inevitably failed. There are, however, in the literature many reports of patients subjected to spinal cord or intracerebral stimulation who have enjoyed a durable relief for decades. In fact, I was recently contacted by a patient because of malfunctioning of a spinal cord stimulation system implanted in 1973 and continuously in use since that time.

To date, ablative pain surgery is justified only for a limited number of patients with specific indications. For example, no one would consider cordotomy for non-cancer related pain. Nevertheless, this operation, introduced in 1911 by Martin and Spiller, is perhaps the most rational and effective type of pain surgery. It still has an important place in the armamentarium for managing some patients with severe pain due to malignancy and resistant to advanced pharmacotherapy. Otherwise, the development of modern pain surgery is characterized by efforts to minimize invasiveness and postoperative neurological deficits. The treatment of trigeminal neuralgia is a good example of the evolution of pain surgery as it has evolved from neurotomy and rhizotomy to microvascular decompression.

The less invasive procedures such as intracisternal phenol injection and ganglion/rootlet electrocoagulation have been replaced by selective thermorhizotomy, graded root compression and glycerol injection. Radiosurgery represents the most recent and non-invasive development.

A notable, and non-controversial, exception to the tendency to abandon destructive pain surgery is dorsal-root-entry-zone (DREZ) operations which still appear to be the only efficacious way of treating root avulsion pain. In the 60s and 70s, medial thalamotomy was extensively practiced, mostly for pain...
in malignancy disease. The results were mediocre and with the dissemination of a rational and more liberal usage of opioids the practice of thalamotomy ceased. However, in later years, some proponents of this type of ablative surgery have claimed its usefulness even for non-cancer related pain. It might be that favorable outcomes have been achieved because the original target area has been modified. Are we perhaps witnessing a revival of thalamotomy?

In a way, it is surprising that new neuroanatomical data still appear. The “discovery” of a spinal ascending pathway, located in the center of the dorsal cord and subserving visceral nociceptive pain, has generated a technique using a common hypodermic needle.

A major advance with pivotal importance for all pain treatment modalities is the differentiation of various forms of pain. It should be remembered that not until the last decade has it been recognized that pain can no longer be conceptualized as an entity (e.g., “cancer pain”) and that the dichotomy of nociceptive and neurogenic pain is not a sufficient base for an adequate pain diagnosis, which should instead identify the underlying pathophysiological mechanisms. This novel approach to pain analysis has evolved as a prerequisite for adequate therapy. Postherpetic neuralgia, which may present with a variety of symptoms, can serve as an example of when a mechanism-oriented pain diagnosis is virtually mandatory for therapeutic efficacy. Such a more refined and rational way of diagnosing pain is actually of paramount importance for defining selection criteria for all forms of pain surgery.

It is now more than six decades since the first textbook on pain surgery appeared: René Leriche, La chirurgie de la douleur (1937). For many years, the “bible” and standard book in the field was Pain and the Neurosurgeon, by White and Sweet, published in 1955, with a subsequent edition appearing in 1969. This thorough treatise covered virtually all aspects of pain and is characterized by the many detailed case reports described in the meticulous way that was typical for Sweet. In 1989, Gybels and Sweet published an extensive textbook, Neurosurgical Treatment of Persistent Pain, which, apart from practical guidelines and evaluations, contains comprehensive accounts on the physiological background of each procedure in the light of modern pain research. A more recent publication, partly based on two consensus conferences, is Neurosurgical Management of Pain, edited by North and Levy. It should also be noted that many chapters in Gildenberg and Tasker’s Textbook of Stereotactic and Functional Neurosurgery are devoted to pain surgery as well.

There is reason to remind readers of the fact that for many decades, neurosurgeons were pioneers, playing leading roles in the advancement of pain treatment. Pain management was then an indispensable part of neurosurgical training, but it appears that with the evolution and diversification of neurosurgery, the number of neurosurgeons presently choosing pain surgery as their preferred subspecialty is decreasing. As a consequence, the art of performing, for example, percutaneous cordotomy or analyzing facial pain other than trigeminal neuralgia is fading. This is regrettable, because for many patients a surgical approach to the management of their chronic pain remains the only option. It is indeed our obligation to spread this message to the medical community in general and to our anaesthesiological colleagues in particular, who presently care for the great majority of pain patients.

There is no doubt that a great need exists for an updated text on pain surgery, one that covers the entire field and could serve as a source of knowledge and inspiration for both clinicians and basic scientists. A special merit of the present volume is that it includes a section on the medical aspects of pain, with guidelines for analysis, assessment, non-surgical treatments, pain clinic organization and so forth, solid knowledge of which is mandatory for a neurosurgeon who must function in a multidisciplinary context. The list of contributors is truly international and virtually represents a “who’s who” in pain medicine, management, and surgery. A characteristic feature is that each chapter, written by a recognized and experienced specialist, is followed by a commentary by someone representing different perspectives and opinions. In this way, a balanced presentation of issues that may be controversial is attained and the usefulness of each surgical procedure is evaluated from different aspects. The task of organizing and editing such a publication is huge and the accomplishments of Dr. Burchiel are indeed admirable. I know that most of the authors are clinically and scientifically extremely busy and it must have required repeated communications from the editor to finally gather all contributions. Now, looking at the final product, I realize that this volume is a worthy follower of the classics in the field of pain in general and of pain surgery in particular. It is my conviction that this book will be most useful for everyone interested in advanced and interventional pain therapy, and it is my hope that it will serve as a source of inspiration for young neurosurgeons to embark on the fascinating field of pain surgery.

Björn Meyerson
Professor emeritus
Karolinska Institutet. Stockholm
Preface

The origin of this textbook stems, in no small measure, from a conversation between a senior neurosurgeon of some notoriety and a chief resident in neurosurgery, deep in the hunt for a job in a prestigious academic medical center. Early in the interview it became clear to the seasoned faculty member that this tyro wanted to pursue the neurosurgical management of pain as his scholarly niche in academics. Skeptical, the question was put to the soon-to-be academician: Specifically, what would he propose as possible surgical procedures for pain? After some verbal foot shuffling, the young neurosurgeon opined that well, of course, there were many highlights in the vast sweep of operative therapies for pain, at least two or three that he could think of right off. Lives are changed by small moments like this.

In the intervening years, I have mulled that question. Is there a definable specialty of neurosurgery devoted to the treatment of pain? The answer is unequivocally, yes. It is part of the larger discipline of pain medicine that took root and flourished during the past four decades since its development by John Bonica and his associates at the University of Washington in the 1960’s. The pantheon of pain research and treatment, is, in fact, teeming with neurosurgical heroes. In the vanguard were men like Fred Kerr and William Sweet. They were followed by the likes of Ron Tasker, Bjorn Myerson, Bob King, Hu Rosomoff, Blaine Nashold, John Loeser, Don Richardson, Yves Lazorthes, Peter Jannetta, Marc Sindou, Takashi Tsubokawa, Phil Gildenberg, Don Long, Yucel Kanpolat, and many others. These men helped to define a field that continues to grow and evolve, as does any healthy discipline of medicine. This text is a testament to the status of surgical pain management at the beginning of the twenty-first century.

Early in the planning for this book, I decided to employ a format similar to that used by a number of currently successful medical journals. These journals have developed a format of scientific article followed by expert commentary. Most notably in my field *Neurosurgery* exploits this style.

Dedication

Generations of neurosurgeons will remember the erudite, but crusty, Yankee who dominated the field of pain surgery for so many decades. My personal recollection is of a man who always seemed to be sitting in the front row of every session, taking extensive notes, and asking the tough, probing questions. On January 22, 2001, the field of neurosurgery was diminished by his passing. He remains a role model and inspiration to those of us who have chosen this area for our personal professional path. It is for this reason that this book is dedicated to Dr. William H. Sweet.
to good advantage. I know that I, and I suspect many of my colleagues, read these comments (at times to the exclusion of the article!) as a way of gaining perspective on the content and significance of the contribution. In this book I have emulated this motif. I also wanted to include new perspectives on topics related to pain treatment. Therefore, in as many cases as possible, I have asked representatives of the coming generation of pain surgeons to prepare the more traditional didactic textual material. This, I hoped would help avoid the syndrome of “cloned chapters,” written by a small cadre of senior authors, so common in many of our major medical texts. In the present book, the graybeards get their revenge by the application of incisive and sage comments at the conclusion of each chapter.

It has been the utmost personal honor to work with so many luminaries from the fields of neuroscience, neurosurgery, neurology, anesthesiology, rehabilitation medicine, internal medicine, plastic surgery, psychiatry, psychology, and dentistry in the preparation of this book. My intent was to produce a veritable “who’s who” of pain surgery. The final author list exceeds even my original admittedly expansive concept.

I have included topics in this book that might seem somewhat ancillary to the knowledge base of the clinician interested in surgical pain treatment. Beyond the obligatory reviews of the anatomy, physiology, and pharmacology of pain and nociception, and a recitation of specific pain diagnoses, some topics may appear to be off the mark of what might be expected to be, for the most part, a procedural text. But, in fact, discussions on the assessment of pain patients, the rehabilitative treatment of patients with chronic pain, management of opiates and other analgesics, myofacial treatments, and the ethics of pain control in the dying patient, are as central to the practice of surgical pain management as knowing how to place a spinal cord stimulator or perform a DREZ operation. In my mind, being an effective pain surgeon requires a broad knowledge of the field of pain medicine, with all of its ramifications.

As with any successful campaign, the production of a textbook was dependent on organization to successfully prosecute the plan. For this I am deeply indebted to my publications assistant, Beth Fee for her tireless patience, dogged persistence, and indefatigable good humor. Her contribution to this project is particularly poignant given that it occurred during a time that all of us who know her so well were saddened by the untimely death of her husband, Larry Fee. This book, in large measure, bears witness of her love for him, and will be a lasting tribute to his memory.

I also thank Joanie Mastrandrea and Todd Ellingston for keeping the lid on administrative and clinical concerns of a department and a neurosurgical practice, respectively, in the throes of finalizing this book. This work started with the encouragement of Ave McCraken, and continued through the capable management of Kathy Lyons and production skills of Becky Dille. I am beholden to all those at Thieme who helped make this book a reality. Most importantly, words cannot express my love and appreciation for my wife, Debra, and to our family for their tolerance of my day job.

There are numerous excellent textbooks devoted to the problem of pain diagnosis and treatment. Most notable among these are Bonica’s Management of Pain (3rd edition), edited by John Loeser, and the Textbook of Pain, edited by Pat Wall and Ronald Melzack. More specific to the topic of the surgical treatment of pain is Neurosurgical Management of Pain, edited by Richard North and Robert Levy. Comprehensive textbooks on neurosurgery such as Neurosurgery (2nd edition), edited by Robert Wilkins and Setti Rengachary, and Youmans Neurological Surgery, edited by Richard Winn, also have good overview sections on the topic of surgery for pain. The Textbook of Stereotactic and Functional Neurosurgery, edited by Phil Gildenberg and Ronald Tasker, contains an extensive section on pain and its surgical management. These books should all be part of the library of any serious student of the surgical treatment of pain.

With all due admiration for the texts noted, the book that I have edited still risks disappearance into the penumbra that continues to radiate from the monumental works by White and Sweet: Pain, Its Mechanisms and Neurosurgical Control, published in 1955, and Pain and the Neurosurgeon, published in 1969. The later addition of Neurosurgical Treatment of Persistent Pain, by Gybels and Sweet, in 1989, simply confirmed Dr. Sweet’s preeminence as teacher and mentor to a generation of clinicians interested in the surgical treatment of pain. These books are the standard against which future textbooks on pain surgery will likely be compared.
Basic Considerations

The scientific basis of pain treatment has advanced in parallel with the explosive growth of neuroscience in the past 45 years since the publication of *Pain, Its Mechanisms and Neurosurgical Control*. Details continue to be added to our knowledge of nociceptive and antinociceptive systems. Perhaps the most significant advancements have occurred in our understanding of neuropathic pains, e.g., pains due to nervous system injury. Important progress has also been made in the manipulation of antinociceptive systems by so-called “neuromodulation.” In this area, in particular, experimental studies on intrathecal opiates and stimulation of the central and peripheral nervous system have led to substantial improvement in what has come to be known as “interventional pain management.” These basic considerations are fundamental to an understanding of the surgical techniques discussed later in this book.

You might be somewhat taken aback by what appears to be a fundamental disagreement between the author and commentator of Chapter 2. This apparent conflict is emblematic of a genuine, and sometimes virulent, controversy on the nature and basis of chronic neuropathic pains that run under banners such as “Sympathetically-maintained Pains,” “Reflex Sympathetic Dystrophy,” and “Complex Regional Pain Syndrome” (types I and II). My charge to the reader is to take in both sides of the controversy, suspending judgement on the ultimate veracity of either argument. I am reasonably confident that in the fullness of time, continued study and a reliance on evidence-based medicine will unravel what appears at present to be the legendary Gordian knot.
Physiologic Anatomy of Nociception

Thomas K. Baumann

Nociceptive neurons are responsible for the sensory-discriminative aspects of pain. This chapter describes the anatomic connections and physiologic properties of peripheral and central neurons that contribute to nociception, beginning at the level of nociceptive primary afferent neurons and proceeding through the ascending pathways that lead to the cortex of the brain.

PHYSIOLOGIC PROPERTIES AND PERIPHERAL PROJECTIONS OF PRIMARY AFFERENT NOCICEPTIVE NEURONS

First-order (primary afferent) nociceptive neurons are sensory neurons that are specialized to detect the presence and signal the location, quality, and intensity of tissue-damaging stimuli.1,2 All tissues of the body (with the exception of the neuraxis) are innervated by these nociceptors. Most tissues are innervated by both nociceptive and nonnociceptive (low-threshold mechanoreceptor and thermoreceptor) neurons, but some tissues (the cornea, dental pulp, internal surface of the tympanic membrane, as well as the dura, venous, and bony sinuses within the cranium) are innervated mainly, if not exclusively, by nociceptive neurons.

Dorsal Root Ganglia and Trigeminal Ganglia

The cell bodies of primary afferent nociceptive neurons are located in dorsal root ganglia and trigeminal ganglia. The posterior half of the head and the rest of the body are innervated by cervical, thoracic, lumbar, and sacral dorsal root ganglion neurons. The innervation follows the well-known pattern of spinal (radicular) dermatomes (Fig. 1–1). Neurons that innervate the anterior aspect of the head (Fig. 1–2) have cell bodies in trigeminal ganglion, except for slowly adapting mechanoreceptors that innervate the gums and masticatory muscles (the cell bodies of which are in the trigeminal mesencephalic nucleus). Within dorsal root ganglia and trigeminal ganglia, the cell bodies and axons of nociceptive and nonnociceptive neurons are intermixed, arranged in a loosely somatotopic fashion.

Nociceptive neurons make up approximately half the population of the neurons in the dorsal root and trigeminal ganglia (the rest of the neurons are devoted to innocuous tactile, thermal, and kinesthetic sensations). Axons of nociceptive neurons that innervate the skin, muscle, or joints project through peripheral nerves accompanied by axons of nonnociceptive somatosensory neurons (Fig. 1–3); axons of visceral nociceptive neurons project through visceral nerves along with the axons of sympathetic and parasympathetic neurons. Some primary afferent nociceptive neurons have large-diameter, thickly myelinated axons that conduct action potentials rapidly (i.e., in the Aβ-fiber range),3 but the vast majority of nociceptive sensory endings are supplied by small-diameter axons, which are either thinly myelinated or unmyelinated. The former conduct action potentials at velocities between 2 and 40 m/s and traditionally are designated Aδ (when referring to fibers that innervate the skin) and group III (in the case of fibers innervating skeletal muscle and joints). Transmission along unmyelinated (C- or group IV) fibers is quite slow (≤1.5 m/s), meaning that brief, simultaneous activation of nociceptive Aδ- and C-fibers in distal extremities can give rise to “first” and “second” pain because the conduction distance to the spinal cord is sufficiently long to allow temporal separation between the Aδ- and C-fiber action potential volleys.

Nociceptive Neuron Response to Different Sensory Submodalities of Noxious Stimulation

Neurophysiologists recognize several physiologic types of primary afferent nociceptive neurons and classify them according to the conduction velocity of the axon and the types of noxious stimulation that excite the neuron. Tissue-damaging or noxious stimuli may be mechanical, thermal, or chemical. Nociceptive neurons that respond to more than one type (or submodality) of noxious stimulation are often referred to as polymodal. Neurons that respond only to intense mechanical stimuli are called high-threshold mechanoreceptors (Fig. 1–4), and nociceptive neurons that respond to both noxious heat and mechanical stimuli are referred to as mechanothermal nociceptors, many of which also respond to noxious cold stimuli (Fig. 1–5).4

Among cutaneous mechanothermal nociceptors with Aδ-fibers, neurophysiological experiments revealed two sub-